Шифратор и дешифратор дистанционного управления. Шифраторы и дешифраторы Принцип работы советского шифратор простая схема

Одними из очень важных элементов цифровой техники, а особенно в компьютерах и системах управления являются шифраторы и дешифраторы.

Когда мы слышим слово шифратор или дешифратор, то в голову приходят фразы из шпионских фильмов. Что-то вроде: расшифруйте депешу и зашифруйте ответ.

В этом нет ничего неправильного, так как в шифровальных машинах наших и зарубежных резидентур используются шифраторы и дешифраторы.

Шифраторы.

Таким образом, шифратор (кодер), это электронное устройство, в данном случае микросхема, которая преобразует код одной системы счисления в код другой системы. Наибольшее распространение в электронике получили шифраторы, преобразующие позиционный десятичный код, в параллельный двоичный. Вот так шифратор может обозначаться на принципиальной схеме.

К примеру, представим, что мы держим в руках обыкновенный калькулятор, которым сейчас пользуется любой школьник.

Поскольку все действия в калькуляторе выполняются с двоичными числами (вспомним основы цифровой электроники), то после клавиатуры стоит шифратор, который преобразует вводимые числа в двоичную форму.

Все кнопки калькулятора соединяются с общим проводом и, нажав, к примеру, кнопку 5 на входе шифратора, мы тут же получим двоичную форму данного числа на его выходе.

Конечно же, шифратор калькулятора имеет большее число входов, так как помимо цифр в него нужно ввести ещё какие-то символы арифметических действий, поэтому с выходов шифратора снимаются не только числа в двоичной форме, но и команды.

Если рассмотреть внутреннюю структуру шифратора, то несложно убедиться, что он выполнен на простейших базовых логических элементах .

Во всех устройствах управления, которые работают на двоичной логике, но для удобства оператора имеют десятичную клавиатуру, используются шифраторы.

Дешифраторы.

Дешифраторы относятся к той же группе, только работают с точностью до наоборот. Они преобразуют параллельный двоичный код в позиционный десятичный. Условное графическое обозначение на схеме может быть таким.

Или таким.

Если говорить о дешифраторах более полно, то стоит сказать, что они могут преобразовывать двоичный код в разные системы счисления (десятичную, шестнадцатиричную и пр.). Всё зависит от конкретной цели и назначения микросхемы.

Простейший пример . Вы не раз видели цифровой семисегментный индикатор, например, светодиодный. На нём отображаются десятичные цифры и числа к которым мы привыкли с детства (1, 2, 3, 4...). Но, как известно, цифровая электроника работает с двоичными числами, которые представляют комбинацию 0 и 1. Что же преобразовало двоичный код в десятичный и подало результат на цифровой семисегментный индикатор? Наверное, вы уже догадались, что это сделал дешифратор.

Работу дешифратора можно оценить вживую, если собрать несложную схему, которая состоит из микросхемы-дешифратора К176ИД2 и светодиодного семисегментного индикатора, который ещё называют «восьмёркой». Взгляните на схему, по ней легче разобраться, как работает дешифратор. Для быстрой сборки схемы можно использовать беспаечную макетную плату .

Для справки. Микросхема К176ИД2 разрабатывалась для управления 7-ми сегментным светодиодным индикатором. Эта микросхема способна преобразовать двоичный код от 0000 до 1001 , что соответствует десятичным цифрам от 0 до 9 (одна декада). Остальные, более старшие комбинации просто не отображаются. Выводы C, S, K являются вспомогательными.

У микросхемы К176ИД2 есть четыре входа (1, 2, 4, 8). Их ещё иногда обозначают D0 - D3 . На эти входы подаётся параллельный двоичный код (например, 0001). В данном случае, двоичный код имеет 4 разряда. Микросхема преобразует код так, что на выходах (a - g ) появляются сигналы, которые и формируют на семисегментном индикаторе десятичные цифры и числа, к которым мы привыкли. Так как дешифратор К176ИД2 способен отобразить десятичные цифры в интервале от 0 до 9, то на индикаторе мы увидим только их.

Ко входам дешифратора К176ИД2 подключены 4 тумблера (S1 - S4), с помощью которых на дешифратор можно подать параллельный двоичный код. Например, при замыкании тумблера S1 на 5 вывод микросхемы подаётся логическая единица. Если же разомкнуть контакты тумблера S1 - это будет соответствовать логическому нулю. С помощью тумблеров мы сможем вручную устанавливать на входах микросхемы логическую 1 или 0. Думаю, с этим всё понятно.

На схеме показано, как на входы дешифратора DD1 подан код 0101. На светодиодном индикаторе отобразится цифра 5. Если замкнуть только тумблер S4, то на индикаторе отобразится цифра 8. Чтобы записать число от 0 до 9 в двоичном коде достаточно четырёх разрядов: a 3 * 8 + a 2 * 4 + a 1 * 2 + a 0 * 1 , где a 0 - a 3 , - это цифры из системы счисления (0 или 1).

Представим число 0101 в десятичном виде 0101 = 0*8 + 1*4 + 0*2 + 1*1 = 4 + 1 = 5 . Теперь взглянем на схему и увидим, что вес разряда соответствует цифре, на которую умножается 0 или 1 в формуле.

Дешифратор на базе технологии ТТЛ - К155ИД1 использовался в своё время для управления газоразрядным цифровым индикатором типа ИН8, ИН12, которые были очень востребованы в 70-е годы, так как светодиодные низковольтные индикаторы ещё были очень большой редкостью.

Всё изменилось в 80-е годы. Можно было свободно приобрести семисегментные светодиодные матрицы (индикаторы) и среди радиолюбителей прокатился бум сборки электронных часов. Самодельные электронные часы не собрал для дома только ленивый.

Шифратор (coder) - это комбинационное устройство, выполняющее функции, обратные дешифратору. При подаче сигнала на один из его входов (унитарный код) на выходе должен образоваться соответствующий двоичный код.

Если число входов шифратора равно 2n, то число выходов, очевидно,

должно быть равным n, т.е. числу разрядов двоичного кода, которым можно закодировать 2n ситуаций.

Проиллюстрируем синтез схемы шифратора при n=3. Таблица истинности имеет вид, приведенный в табл. 2.

Работа шифратора описывается тремя функциями y3, y2, y1, каждая из которых равна единице на четырех наборах (номер набора соответствует номеру входа). Сов ДНФ функций выхода равны:

Три функции реализуются тремя дизъюнкторами (рис. 11), на выходах которых формируется трехразрядный двоичных код.

При этом аргумент x0 не входит ни в одну из логических функций и шина x0 остается незадействованной. Действительно, входному сигналу x0 должен соответствовать код «000», который все равно будет на выходе шифратора, если все остальные аргументы равны нулю.

Рис. 11.

Структура шифратора

При построении шифратора для получения на выходе натурального двоичного кода учитывают, что единицу в младшем разряде такого кода имеют нечетные десятичные цифры 1, 3, 5, 7,…, т.е. на выходе младшего разряда должна быть 1, если она есть на входе №1 или на входе №3 и т.д. Поэтому входы под указанными номерами через элемент ИЛИ соединяются с выходом младшего разряда. Единицу во втором разряде двоичного кода имеют десятичные цифры 2, 3, 6, 7,…; входы с этими номерами через элемент ИЛИ должны подключаться к выходу шифратора, на котором устанавливается второй разряд кода. Аналогично, входы 4, 5, 6, 7,… через элемент ИЛИ должны быть соединены с выходом, на котором устанавливается третий разряд, так как их коды имеют в этом разряде единицу, и т.д.

Схема шифратора, построенная в соответствии с изложенным принципом, приведена на рис. 12, а, а условное изображение - на рис. 12, б, где E - вход разрешения работы, а Е0 - выход, логический 0 на котором свидетельствует о том, что ни один информационный вход не возбужден.

Для расширения разрядности (каскадирования) шифраторов вход E последующего шифратора соединяют с выходом E0.предыдущего. Если информационные входы предыдущего шифратора не возбуждены (E0=0), то последующий шифратор получает разрешение работать.

Рис. 12. Схема шифратора (а) и условное изображение (б)

Применение шифраторов

Шифратор может быть организован не только для представления (кодирования) десятичного числа двоичным кодом, но и для выдачи определенного кода (его значение заранее выбирается), например, при нажатии клавиши с соответствующим символом. При появлении этого кода система оповещается о том, что нажата определенная клавиша клавиатуры.

Шифраторы применяются в устройствах, преобразующих один вид кода в другой. При этом вначале дешифрируется комбинация исходного кода, в результате чего на соответствующем выходе дешифратора появляется логическая 1. Это отображение входного кода, значение которого определено номером возбужденного выхода дешифратора, подается на шифратор, организованный с таким расчетом, чтобы каждый входной код вызывал появление заданного выходного кода.

Шифраторы используются для построения устройств ввода первичной информации - клавиатур. Для этого необходимо активные уровни сигнала унитарного входного кода формировать с помощью ключей-кнопок клавиатуры. Аналогично можно реализовывать устройства вывода информации с использованием дешифраторов, например индикаторы или исполнительные механизмы.

На рис. 13 показан пример построения линейной и матричной клавиатур на 8 и 64 клавиш соответственно.


Рис. 13.

В схеме рис. 13, а входной логический ноль формируется путем нажатия соответствующей кнопки и замыкания входной цепи на нулевой потенциал общего провода. При отсутствии воздействия на кнопки входные потенциалы шифратора через резисторы R1…R8 подтянуты к напряжению питания, т.е. имеют пассивные уровни логических единиц. Соответствующий двоичный код номера нажатой кнопки с выхода шифратора поступает в цифровую часть схемы измерительного устройства для последующей обработки. Признаком того, что хотя бы одна из кнопок нажата, является активный уровень сигнала «кнопка нажата», сформированный выводом G микросхемы шифратора. Этот сигнал может служить командой цифровому устройству, к которому подключена клавиатура, на то, чтобы оно приступило к считыванию кода нажатой кнопки. Такой сигнал может быть подан, например, на линию прерывания микропроцессорной системы.

Линейные клавиатуры имеют ограничения по количеству кнопок, определяемые разрядностью шифратора. Поскольку многие современные измерительные устройства имеют широкую функциональность и могут требовать наличия большого количества управляемых органов, линейная организации в таком случае может оказаться недостаточной. Когда требуется формировать клавиатуры с большим количеством кнопок, конструктивно и схемотехнически оптимальной является матричная организация, пример которой показан на рис. 13, б. В такой схеме кнопки SA1…SA64 устанавливаются в пересечениях строк и столбцов прямоугольной матрицы размерностью 8х8. Опрос кнопок осуществляется путем сканирования их в матрице. Цифровое устройство вырабатывает двоичный код, который преобразуется дешифратором DD2 (дешифратор в схеме изображен в зеркальном отображении, т.е. его входы в УГО показаны справа, а выходы слева) в унитарный инверсный код, в результате чего выбранный столбец матрицы приобретает потенциал уровня логического нуля. Это эквивалентно подключению к земле одного из контактов кнопок SA1…SA8 в схеме рис. 10, а. Далее, если в выбранном столбце нажата кнопка, то на выходе шифратора DD1 сформируется ее двоичный код, а также станет активным сигнал «кнопка нажата». В противном случае сигнал «кнопка нажата» будет иметь пассивный уровень. С определенной периодичностью цифровое устройство будет менять двоичный код активизируемого столбца матрицы, в результате чего циклически будет производиться опрос всех столбцов. Таким образом, двоичный код активизируемого столбца будет выходным для цифрового устройства, к которому данная клавиатура подключена, а код номера кнопки в столбце - входным. При такой организации от цифрового устройства требуется, чтобы оно постоянно опрашивало клавиатуру, формируя двоичный код столбца на дешифратор столбцов. Часто подобным цифровым устройством является микропроцессорная система. Возложение на нее задачи постоянного формирования и чередования кодов столбцов матрицы приводит ее к загрузке этим процессом, что снижает производительность системы. Поэтому для разгрузки микропроцессорной системы в схеме клавиатуры используют устройство, автономно формирующее и чередующее коды столбцов матрицы. Таким устройством является счетчик DD3, на входы которого подается последовательность импульсов с генератора импульсов GN. В схеме подключение счетчика к входам дешифратора показано пунктирными линиями. В общем случае счетчик формирует на выходе двоичный код количества импульсов, поступающих на его вход. Таким образом, код с выхода счетчика будет постоянно увеличиваться на единицу, что повлечет за собой активизацию соседних столбцов в матрице. Этот же код будет поступать в цифровое устройство уже как входной код для идентификации им номера активного столбца матрицы. Признаком того, что хотя бы одна кнопка нажата, будет наличие на выходе «кнопка нажата» активного уровня сигнала, являющегося для цифрового устройства командой на считывания кодов номеров столбца и нажатой кнопки в столбце.

Приоритетные шифраторы

Кроме обычных шифраторов существуют также приоритетные шифраторы. Такие шифраторы выполняют более сложную операцию. При работе ЭВМ и других устройств часто решается задача определения приоритетного претендента на обслуживание. Несколько конкурентов выставляют свои запросы на обслуживание, которые не могут быть удовлетворены одновременно. Нужно выбрать, кому предоставляется право первоочередного обслуживания. Простейший вариант задачи - присвоение каждому источнику запросов фиксированного приоритета. Например, группа из восьми запросов R7,…, R0 (R - от англ. request - запрос) формируется так, что высший приоритет уменьшается от номера к номеру. Самый младший приоритет у нулевого источника - он будет обслуживаться только при отсутствии всех других запросов. Если имеются одновременно несколько запросов, обслуживается запрос с наибольшим номером.

Приоритетный шифратор вырабатывает на выходе двоичный номер старшего запроса. При наличии всего одного возбужденного входа приоритетный шифратор работает так же, как и двоичный. Поэтому в сериях ИС двоичный шифратор как самостоятельный элемент может отсутствовать. Режим его работы - частный случай работы приоритетного шифратора.

Вид урока: комбинированный урок.

Технология: личностно-ориентированная.

Время проведения: 45 минут.

Оборудование: компьютерный класс, оснащенный современной техникой и лицензированным программным обеспечением.

Цели урока:

  • повторить способы представления информации в ЭВМ;
  • сформировать первичное представление об устройстве компьютера, о назначении его составных частей;
  • побудить интерес к изучению информатики.

Задачи урока:

Обучающая – формирование у учащихся представлений о единой картине мира (одинаковые способы кодирования информации различных видов).

Развивающая - развить логическое мышление школьников через установление причинно-следственных связей.

Воспитательные – воспитание познавательного интереса учащихся, умения слушать, аккуратности в работе, трудолюбия.

Подготовка к уроку.

Для урока были подготовлены:

Презентация, слайды, которые демонстрировались на экран с помощью проектора (приложение 1).

Электронная модель шифратора, построенная с помощью программы Excel. На рабочем листе размещена таблица истинности, логическая схема шифратора и смоделирована его работа (приложение 2).

Оформление доски.

На доске записаны тема урока, также план урока для учащихся:

  1. Представление информации в ЭВМ.
  2. Устройство для кодирования информации - шифратор.
  3. Схема шифратора для кодирования числовой информации.

План урока для учителя.

Ход урока

I. Организационный момент.

II. Мотивационное начало урока.

Учитель. Тема сегодняшнего урока – “Шифраторы. Назначение и принцип построения”. В ходе урока мы с вами должны изучить устройство, с помощью которого информация попадает в компьютер. Но перед этим нам с вами необходимо вспомнить о способах представления информации в ЭВМ.

Вопрос. Информацию каких видов может обрабатывать современный компьютер?

Ответ. Числовую, текстовую, графическую и звуковую информацию. Информация каждого вида должна быть представлена в форме, понятной компьютеру

Вопрос. В каком виде данная информация представлена в компьютере?

Ответ. Числовая, текстовая, графическая и звуковая информация в компьютере представлена в виде двоичных кодов.

Вопрос. Почему для представления информации в ЭВМ был выбран именно двоичный код?

Ответ. Алфавит двоичного кода составляют символы 0 и 1. Технически реализовать два различных состояния значительно проще, например отсутствие напряжения может изображать 0, наличие – 1; участок поверхности магнитного диска (намагничен/не намагничен); участок поверхности лазерного диска (отражает/не отражает).

Вопрос. Назовите устройства для ввода информации в компьютер?

Ответ. Клавиатура, мышь, сканер, микрофон, фотоаппарат, видеокамера.

III. Объяснение темы урока.

Современный компьютер может обрабатывать, как мы уже знаем, числовую, текстовую, графическую и звуковую информацию. Информация для обработки должна быть представлена в виде понятной компьютеру. Мы также назвали устройства, с помощью которых информация вводится в компьютер. Это, прежде всего клавиатура. Рассмотрим, как преобразуется информация, прежде чем появиться на мониторе.

Из схемы, показанной на Рисунке 1 видно, что процессор компьютера обрабатывает информацию, только представленную в виде двоичных чисел и внутренних кодов. Информация с клавиатуры, прежде чем попасть на обработку в процессор поступает на кодирующее устройство - шифратор . Название “шифратор” связано с тем, что первые коды (шифры) появились еще в глубокой древности и использовались для засекречивания важных сообщений от тех, кому они не были предназначены. В задачу нашего кодирования входит не засекречивание сообщений, а иная цель: преобразовать входную информацию в вид понятный компьютеру. Предназначенное для этой цели кодирующее устройство (шифратор) сопоставляет каждому символу исходного текста определенное двоичное число (код). Далее информация в виде двоичного кода поступает на обработку в процессор. После обработки информация через дешифратор (устройство для обратного преобразования) поступает на устройство вывода. Рассмотрим более подробно устройство для кодирования числовой информации. Для ввода числовой информации в компьютер может быть использована обыкновенная клавиатура, которая содержит десятичные цифры. Как известно, основанием системы счисления является число знаков или символов, используемых для изображения цифр в данной системе счисления. Для десятичной системы счисления число таких символов десять, это - 0,1,2,3,4,5,6,7,8,9. В двоичной системе счисления таких знаков два – 0 и 1. Следовательно, кодирующее устройство (шифратор) должно преобразовать входную информацию в виде десятичного числа в двоичное число, т.е. каждой цифре десятичной системе счисления поставить в соответствие определенный код двоичного числа. Мы с вами знакомы с правилами перевода чисел из десятичной системы счисления в двоичную систему счисления. Также нам известно, что для представления цифры 9 в двоичной системе счисления необходимо четырехразрядное двоичное число. Составим таблицу истинности.

Таблица 1

Десятичное число Двоичный код числа
Четвертый разряд Третий разряд Второй разряд Первый разряд
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

В таблице записаны десятичные числа и им поставлены в соответствие двоичные. Проанализировав таблицу, можно сделать следующие выводы, необходимые для построения кодирующего устройства. Входное устройство должно содержать десять клавиш, от 0 до 9. На выходе устройства будет четырехразрядный двоичный код. Причем, на выходе первого разряда информация (логическая 1) будет, в случае если нажаты клавиши 1,3,5,7,9. На выходе второго разряда 1 будет в случае, когда нажаты клавиши 2,3,6,7. На выходе третьего разряда 1 будет в случае, когда нажаты клавиши 4,5,6,7. На выходе четвертого – когда нажаты клавиши 8 или 9. Для построения устройства нам необходимы логические элементы ИЛИ, которые объединят информацию с клавиш и выдадут ее на соответствующий разряд.

Схема такого устройства изображена на рисунке 2. Условное изображение шифратора, используемое на логических схемах, изображено на рисунке 3.

IV. Этап общения, систематизации знаний и закрепление изученного.

Учитель. Для закрепления изученного материала мы проверим работу шифратора на электронной модели. На электронной модели показано: таблица истинности шифратора, условное изображение на логических схемах, электрическая схема и клавиши ввода. Для проверки работы шифратора достаточно выбрать любую десятичную цифру и нажать соответствующую ей клавишу. На выходе шифратора появится двоичный код числа, причем единицы будут показаны красным цветом. Необходимо проверить соответствие полученного двоичного кода содержанию таблицы истинности. Приступим.

Ученики выполняют работу на компьютерах.

V. Подведение итогов. Домашнее задание.

Сегодня мы с вами познакомились с устройством, которое нашло широкое применение в современной технике. Каждый из нас с кодирующими устройствами сталкивается многократно в течение дня. Это, прежде всего, вычислительная техника, телефон, пульт дистанционного управления телевизором, микроволновая печь, стиральная машина и другие предметы бытовой техники.

В качестве домашнего задания я попрошу вас к следующему уроку повторить представленный материал, и определить в какой бытовой технике, не названной мною, нашли практическое применение шифраторы. Спасибо! До свидания!

3.1.2 Шифраторы

Шифрирование это способ сжатия данных за счет преобразования m -разрядного унитарного (десятичного) кода в n -разрядный двоичный или двоично-десятичный код (m > n ). Шифраторы (CD , coder ) выполняют функцию, обратную функции дешифратора. При поступлении сигнала на один из входов шифратора на его выходах формируется код, соответствующий номеру этого входа.

Полный шифратор (m n ) имеет m = 2 n входов и n выходов, если m < 2 n , то шифратор не полный. Также он может быть неприоритетным, если разрешена подача только одного активного сигнала или приоритетным, если допускается подача одновременно нескольких активных сигналов на входы.

Принцип работы полного неприоритетного шифратора (4 – 2) поясняется таблицей истинности (таблица 1).

Таблица истинности неприоритетного шифратора (4 – 2) Таблица 1

набора

Информационные входы

Выходы

X 3

X 2

X 1

X 0

F 1

F 0

Карты Карно для минимизации схемы шифраторов обычно не используются вследствие сложности составления при большом количестве переменных.

Из таблицы (1) следует, что младший разряд F 0 кода на выходе шифратора равен единице, когда на нечетных входах присутствует единица:


Старший разряд F 1 кода на выходе шифратора равен единице, когда на входах X 3 , X 2 присутствует единица:

Следовательно, схема шифратора (4 – 2) может быть реализована с помощью двух элементов 2ИЛИ (рис. 1, а).


Рис. 1 Схемы неприоритетного шифратора (4 – 2) на элементах 2ИЛИ (а), 2ИЛИ-НЕ (б)

Для инверсной записи (рис. 1, б):

Один из входных сигналов шифратора обязательно имеет единичное значение (таблица 1). Если на входах X 1 , X 2 , X 3 нулевые значения, это означает, ч то на входеX 0 логическая единица, соответствующая набору 0, и этот вход к схеме может быть не подключен (рис. 1, а). Аналогично для X 3 в схеме шифратора на рис. 1, б. Схемы шифраторов на рисунке отличаются зеркальной перестановкой входов (в обоих случаях младший разряд X 0 , старший X 3 ) и инвертированием выходных сигналов (рис.1, б).

У шифраторов обычно имеются служебные входы и выходы:

- Разрешающий (стробирующий) вход EI (EN ) для выбора времени срабатывания шифратора при условии EI =1, также для наращивания разрядности входного кода.

- Разрешающий выход EO (EN ), определяет отсутствие сигналов на всех информационных выходах (EO = 1). Используется для увеличения разрядности путем подключения дополнительных шифраторов, условие подключения EO =1.

- Разрешающий выход GS (CS ), указывает на наличие информационного сигнала хотя бы на одном входе, принимая значение GS = 1. Обеспечивает согласование работы шифратора и внешних устройств (микропроцессор). Может применяться в схеме наращивания разрядности шифратора для исключения ошибок преобразования кодов.

Одно из основных назначений шифратора – ввод данных в цифровые устройства с помощью клавиатуры. Шифраторы, которые при одновременном нажатии нескольких клавиш вырабатывают код только старшей цифры, называют приоритетными. Если эти шифраторы выявляют старшую (левую) единицу и формируют двоичный код соответствующего единице десятичного номера, то называются указателями старшей единицы (обозначение элемента HPR 1/ BIN ).

В таблице истинности указателя старшей единицы (таблица 2) символом «Х» обозначены значения входных переменных, которые не важны для устройства и могут быть равны 0 или 1. Интерес представляют единицы в старшем разряде соответствующего набора.

Символом « – » обозначены значения переменных, которые не поступают в шифратор, т.к. на разрешающем входе EI сигнал логического нуля, на выходе F 1 F 0 = 00.

Пример : если нажата клавиша старшего разряда Х 3 (набор 5), что соответствует кодам 3 10 = 11 2 , нажатие других клавиш должно игнорироваться.

Таблица истинности указателя старшей единицы (4 – 2) Таблица 2

набора

Служебные

Информационные

вход

выходы

Входы

Выходы

EI

GS

EO

X 3

X 2

X 1

X 0

F 1

F 0

В соответствии с правилом склеивания для выхода F 1 .